Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Neuroimage Clin ; 37: 103299, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36584426

RESUMO

Nonword repetition, a common clinical measure of phonological working memory, involves component processes of speech perception, working memory, and speech production. Autistic children often show behavioral challenges in nonword repetition, as do many individuals with communication disorders. It is unknown which subprocesses of phonological working memory are vulnerable in autistic individuals, and whether the same brain processes underlie the transdiagnostic difficulty with nonword repetition. We used functional magnetic resonance imaging (fMRI) to investigate the brain bases for nonword repetition challenges in autism. We compared activation during nonword repetition in functional brain networks subserving speech perception, working memory, and speech production between neurotypical and autistic children. Autistic children performed worse than neurotypical children on nonword repetition and had reduced activation in response to increasing phonological working memory load in the supplementary motor area. Multivoxel pattern analysis within the speech production network classified shorter vs longer nonword-repetition trials less accurately for autistic than neurotypical children. These speech production motor-specific differences were not observed in a group of children with reading disability who had similarly reduced nonword repetition behavior. These findings suggest that atypical function in speech production brain regions may contribute to nonword repetition difficulties in autism.


Assuntos
Transtorno Autístico , Gagueira , Criança , Humanos , Fala , Transtorno Autístico/diagnóstico por imagem , Memória de Curto Prazo/fisiologia , Linguística
2.
Brain Sci ; 7(6)2017 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-28604606

RESUMO

A multiple sclerosis (MS) diagnosis often relies upon clinical presentation and qualitative analysis of standard, magnetic resonance brain images. However, the accuracy of MS diagnoses can be improved by utilizing advanced brain imaging methods. We assessed the accuracy of a new neuroimaging marker, visual-evoked cerebral metabolic rate of oxygen (veCMRO2), in classifying MS patients and closely age- and sex-matched healthy control (HC) participants. MS patients and HCs underwent calibrated functional magnetic resonance imaging (cfMRI) during a visual stimulation task, diffusion tensor imaging, T1- and T2-weighted imaging, neuropsychological testing, and completed self-report questionnaires. Using resampling techniques to avoid bias and increase the generalizability of the results, we assessed the accuracy of veCMRO2 in classifying MS patients and HCs. veCMRO2 classification accuracy was also examined in the context of other evoked visuofunctional measures, white matter microstructural integrity, lesion-based measures from T2-weighted imaging, atrophy measures from T1-weighted imaging, neuropsychological tests, and self-report assays of clinical symptomology. veCMRO2 was significant and within the top 16% of measures (43 total) in classifying MS status using both within-sample (82% accuracy) and out-of-sample (77% accuracy) observations. High accuracy of veCMRO2 in classifying MS demonstrated an encouraging first step toward establishing veCMRO2 as a neurodiagnostic marker of MS.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...